Pressure effects on the equilibrium configurations of bilayer lipid membranes

نویسندگان

  • Raffaella De Vita
  • Iain W Stewart
  • Donald J Leo
چکیده

Planar bilayer lipid membranes (BLMs) are currently employed to construct many bio-inspired material systems and structures. In order to characterize the pressure effects on the equilibrium configurations of these biological membranes, a novel continuum model is proposed. The BLM is assumed to be a two-layer smectic A liquid crystal. The mean orientation of the amphiphilic molecules comprising the membrane is postulated to be perpendicular to the layers and each layer is idealized as a two-dimensional liquid. Moreover, the BLM is modeled as a simply supported plate undergoing small deformations. It is subjected to a pressure load that acts perpendicularly to the layers. The equilibrium equations and boundary conditions are derived from the bulk elastic energy for smectic A liquid crystals as described by de Gennes and Prost (1993 The Physics of Liquid Crystals 2nd edn (Oxford Science Publications)) by using variational methods. The resulting fourth-order linear partial differential equation is solved by employing cylindrical functions and the series solution is proved to be convergent. The solution is numerically computed for values of the model parameters that are reported in the literature. PACS number: 61.30.Cz

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elasticities and stabilities: lipid membranes vs cell membranes

A cell membrane can be simply regarded as composite material consisting of lipid bilayer, membrane cytoskeleton beneath lipid bilayer, and proteins embedded in lipid bilayer and linked with membrane cytoskeleton if one only concerns its mechanical properties. In this Chapter, above all, the authors give a brief introduction to some important work on mechanical properties of lipid bilayers follo...

متن کامل

Components of the lateral pressure in lipid bilayers deduced from HII phase dimensions.

The components of the effective internal lateral pressure arising from the lipid headgroups and the lipid chains in bilayer membranes are deduced from the conditions for interfacial equilibrium and the spontaneous bending moments within the component monolayers. The latter are obtained from the intrinsic curvature that is deduced from X-ray diffraction measurements on the corresponding inverted...

متن کامل

Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane

Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...

متن کامل

What is the surface tension of a lipid bilayer membrane?

In a recent paper in this journal, Chiu et al. (1995) presented a molecular dynamics study of a planar lipid bilayer membrane in water with the explicit incorporation of a surface tension. Parallel to the membrane plane, a negative pressure of-100 atmospheres was applied, derived from the measured surface tension of a monolayer at an air/water interface. The same approach was put forward by Fel...

متن کامل

Dynamic Response of Model Lipid Membranes to Ultrasonic Radiation Force

Low-intensity ultrasound can modulate action potential firing in neurons in vitro and in vivo. It has been suggested that this effect is mediated by mechanical interactions of ultrasound with neural cell membranes. We investigated whether these proposed interactions could be reproduced for further study in a synthetic lipid bilayer system. We measured the response of protein-free model membrane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007